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Framework of RetinalVasNet 

 

Supplementary Figure 1. Architecture of RetinalVasNet. 

This study replaced the Conv2d layers of UNet 1 with the Conv2d layer DenseBlock of 
the DenseNet 2. RetinalVasNet is symmetric in shape and has two paths of inter-layer 
connections, as shown in Supplementary Figure 1. The down-sampling path is designed 
to connect the layers DenseBlock1, DenseBlock2, DenseBlock3 and DenseBlock4, 
which may capture semantic and contextual information. The other up-sampling path 
is designed to remove spatial information, and connects the layers DenseBlock4, 
DenseBlock5, DenseBlock6 and DenseBlock7. The skip connections between layers 
DenseBlock1 and DenseBlock7, DenseBlock2 and DenseBlock6, and DenseBlock3 
and DenseBlock5 were added to recover the image information lost in the pooling or 
down-sampling layers. The skip connections applied a concatenation operator, instead 
of the sum operator in UNet. 

 

Tuning the parameter epoch 

As shown in the Supplementary Figure 2, when the epoch is 20, the train accuracies of 
the three groups of data had been roughly stabilize. After 20 epochs, there are no 
significant change in their train accuracies (Acc(Train). Similar patterns were also 
observed for the validation dataset. So this study chosen 20 epochs for the proposed 
RetinalVasNet. 
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Supplementary Figure 2. Prediction accuracies of RetinalVasNet on the training 
and testing datasets. Acc(Train) and Acc(Val) are the prediction accuracies of the 
model on the training and validation datasets for the datasets (a) DRIVE, (b) STARE, 
and (c) CHASE_DB1. 
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